Comparison of the global genomic and transcription-coupled repair rates of different lesions in human cells.
نویسندگان
چکیده
There are two subclasses of nucleotide excision repair (NER). One is the global genomic repair (GGR) which removes lesions throughout the genome regardless of whether any specific sequence is transcribed or not. The other is the transcription-coupled repair (TCR), which removes lesions only from the transcribed DNA sequences. There are data that GGR rates depend on the chemical nature of the lesions in a manner that the lesions inflicting larger distortion on the DNA double helix are repaired at higher rate. It is not known whether the TCR repair rates depend on the type of lesions and in what way. To address this question human cells were transfected with pEGFP and pEYFP plasmids treated with UV light, cis-diamminedichloroplatinum(II) (cisplatin) and angelicin and 24 h later the restored fluorescence was measured and used to calculate the respective NER rates. In a parallel series of experiments the same plasmids were incubated in repair-competent protein extracts to determine GGR rates in the absence of transcription. From the two sets of data, the TCR rates were calculated. We found out that cisplatin, UV light and angelicin lesions were repaired by GGR with different efficiency, which corresponded to the degree of DNA helix distortion induced by these agents. On the other hand the three lesions were repaired by TCR at very similar rates which showed that TCR efficiency was not directly connected with the chemical nature of the lesions.
منابع مشابه
DNA repair and recovery of RNA synthesis following exposure to ultraviolet light are delayed in long genes
The kinetics of DNA repair and RNA synthesis recovery in human cells following UV-irradiation were assessed using nascent RNA Bru-seq and quantitative long PCR. It was found that UV light inhibited transcription elongation and that recovery of RNA synthesis occurred as a wave in the 5'-3' direction with slow recovery and TC-NER at the 3' end of long genes. RNA synthesis resumed fully at the 3'-...
متن کاملON THE EFFECTS OF ARA-A AND ARA-C ON X-RAY INDUCED DNA LESIONS IN NORMAL HUMAN AND A-T CELLS: SIMILARITIES AND DIFFERENCES.
A better understanding of the mechanism of chromosomal aberration formation could be obtained by using DNA repair inhibitors. Immortalized normal human (MRC 5 SVI) and ataxia telangiectasia ( AT 5 BIV A ) fibroblastic cell lines were treated with adenosine arabinoside (ara-A) and cytosine arabinoside (ara-C), both potent inhibitors of DNA dsb repair, alone or in combination with x-rays at ...
متن کاملThe sensitivity of human fibroblasts to N-acetoxy-2-acetylaminofluorene is determined by the extent of transcription-coupled repair, and/or their capability to counteract RNA synthesis inhibition.
Nucleotide excision repair (NER) mechanism is the major pathway responsible for the removal of a large variety of bulky lesions from the genome. Two different NER subpathways have been identified, i.e. the transcription-coupled and the global genome repair pathways. For DNA-damage induced by ultraviolet light both transcription-coupled repair and global genome repair are essential to confer res...
متن کاملEnhanced sensitivity to anti-benzo(a)pyrene-diol-epoxide DNA damage correlates with decreased global genomic repair attributable to abrogated p53 function in human cells.
DNA damage from exposure to environmental chemical carcinogens and failure of repair systems to eliminate these lesions from the genome are considered as the crucial initial steps in the development of various human malignancies. Many cellular proteins are known to play vital roles to overcome the effects of DNA damage. Among such proteins, p53 is known to respond to DNA damage by accumulating ...
متن کاملp53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene.
The p53 tumor suppressor gene product is a transcription factor involved in cell-cycle regulation, apoptosis, and DNA repair. We and others have shown that p53 is required for efficient nucleotide excision repair (NER) of UV-induced DNA lesions. p53-deficient cells are defective in the repair of UV photoproducts in genomic DNA but proficient for transcription-coupled repair. Therefore, we exami...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Zeitschrift fur Naturforschung. C, Journal of biosciences
دوره 59 5-6 شماره
صفحات -
تاریخ انتشار 2004